[The indefatigable Mike Magee is at it again... I didn't realize his website is so nicely designed. I haven't played around in there yet but it looks like there's some poesie, and perhaps some wild flarf.]
Posted by Brian Stefans at July 26, 2003 10:15 AM | TrackBackNote first that favoriteNumbers type changed. Instead of our familiar int, we're now using int*. The asterisk here is an operator, which is often called the "star operator". You will remember that we also use an asterisk as a sign for multiplication. The positioning of the asterisk changes its meaning. This operator effectively means "this is a pointer". Here it says that favoriteNumber will be not an int but a pointer to an int. And instead of simply going on to say what we're putting in that int, we have to take an extra step and create the space, which is what does. This function takes an argument that specifies how much space you need and then returns a pointer to that space. We've passed it the result of another function, , which we pass int, a type. In reality, is a macro, but for now we don't have to care: all we need to know is that it tells us the size of whatever we gave it, in this case an int. So when is done, it gives us an address in the heap where we can put an integer. It is important to remember that the data is stored in the heap, while the address of that data is stored in a pointer on the stack.
Posted by: Hercules at January 18, 2004 08:06 PMWhen the machine compiles your code, however, it does a little bit of translation. At run time, the computer sees nothing but 1s and 0s, which is all the computer ever sees: a continuous string of binary numbers that it can interpret in various ways.
Posted by: Harman at January 18, 2004 08:06 PMBeing able to understand that basic idea opens up a vast amount of power that can be used and abused, and we're going to look at a few of the better ways to deal with it in this article.
Posted by: Hercules at January 18, 2004 08:07 PMNote first that favoriteNumbers type changed. Instead of our familiar int, we're now using int*. The asterisk here is an operator, which is often called the "star operator". You will remember that we also use an asterisk as a sign for multiplication. The positioning of the asterisk changes its meaning. This operator effectively means "this is a pointer". Here it says that favoriteNumber will be not an int but a pointer to an int. And instead of simply going on to say what we're putting in that int, we have to take an extra step and create the space, which is what does. This function takes an argument that specifies how much space you need and then returns a pointer to that space. We've passed it the result of another function, , which we pass int, a type. In reality, is a macro, but for now we don't have to care: all we need to know is that it tells us the size of whatever we gave it, in this case an int. So when is done, it gives us an address in the heap where we can put an integer. It is important to remember that the data is stored in the heap, while the address of that data is stored in a pointer on the stack.
Posted by: Jucentius at January 18, 2004 08:07 PMLet's take a moment to reexamine that. What we've done here is create two variables. The first variable is in the Heap, and we're storing data in it. That's the obvious one. But the second variable is a pointer to the first one, and it exists on the Stack. This variable is the one that's really called favoriteNumber, and it's the one we're working with. It is important to remember that there are now two parts to our simple variable, one of which exists in each world. This kind of division is common is C, but omnipresent in Cocoa. When you start making objects, Cocoa makes them all in the Heap because the Stack isn't big enough to hold them. In Cocoa, you deal with objects through pointers everywhere and are actually forbidden from dealing with them directly.
Posted by: Annanias at January 18, 2004 08:07 PM